
OPTIMAL GOVERNMENT PHONOLOGY (OGP) A typology of biradical Semitic verbs

Noam Faust
The Hebrew University

& Outi Bat-El
Tel-Aviv University

(1) Theoretical fusion

Optimal Government Phonology

- (2) An exercise in OGP: The perfective paradigm of **biradical Semitic** verbs
 - A. Inter-language/dialectal stem typology
 - B. Inter- and intra-paradigm relations
 - C. Conclusion with hope for a better future

A. STEM TYPOLOGY

(3) Given the template CVCVCV, we expect to find four biradical stem forms*

Empty V ₂ :	nadda	(nadVda) 'to burn'	Tigre (Raz 1980)
Empty V ₃ :	garar	(gararV) 'to drag'	Hebrew
Empty V ₂ &V ₃ :	ħabb	$(\hbar ab V b V)$ 'to love'	Palestinian Arabic (PA) & Egyptian Arabic (EA)
All full:	*ħababa		Not attested

^{*}We ignore here forms with a complex onset; $\hbar bab \ (\hbar Vbab V)$ and $\hbar baba \ (\hbar Vbaba)$

(4) GP structure: Restrictions on unrealized V-slots

habba is "perfect" since the empty V is governed habb is far from perfect since it has two ungoverned empty Vs (though the final is legally ungoverned)

Nevertheless both are attested

- (5) GP structural (markedness) constraints
 - *OV^G No full governed V a.
 - Prevents realization of all Vs and thus a sequence of surface CV syllables (≈ twosided open syllable deletion; Kuroda 1967/2003)
 - Rules out *ħababa*, ...
 - *0V1 No full final V b.
 - Prevents realization of a final vowel (≈ FINALC; McCarthy 1993)
 - Rules out ħabba
 - $*OV^{UG}$ No empty ungoverned V
 - An ungoverned V-slot is associated with segmental material
 - Rules out surface $\hbar abb$ ($\hbar ab VbV$)
 - Note that the interaction between *OV_{|0} (b) and *OV^{UG} (c) reflects the d. parametric approach to the final V-slot in the GP framework.
- (6) Constraint interaction accounting for the typology – CoN1, CoN2 ➤ CoN3 (no evidence for a crucial ranking between CoN1 and CoN2)
 - Tigre (empty V_2): $* \odot V^G$, $* \odot V^{UG} > * \odot V_1$ a.

	*OV ^G	*OV ^{UG}	*OV].
a. ☞ nadVda			*
b. nadVdV		*!*	
c. nadadV	*!		
d. nadada	*! *		*

Hebrew (empty V_2): $*OV^{UG}$. *OV] $> *OV^G$ b.

Ticorew (empty	\mathbf{v}_{3}). \mathbf{v}_{3}	$, \cup V_{]_{\omega}}$	<i>-</i> 0 v
	*OV]	$*OV^{UG}$	$*OV^G$
a. garVra	*!		
b. garVrV		*!*	
c. ☞ gararV			*
d. garara	*!		**

PA (empty $V_2 \& V_3$): $* \odot V^G$, $* \odot V]_{\alpha} > * \odot V^{UG}$ c.

(, ·]ω	- ,	
	$*\odot V^G$	*OV]	$*OV^{UG}$
a. ħabVba		*!	
b. ☞ ħabVbV			**
c. ħababV	*!		
d. ħababa	*!*	*	

B. PARADIGMATIC RELATIONS

(7) **Paradigms**

	Base	Base + C-initial suffix
Hebrew	garar (garar <mark>V</mark>)	garar-ti (garar <mark>V</mark> ti)
Tigre	nadd-a (nad <mark>V</mark> da)	nadad-ko (nadadVko)
PA	ħabb (ħab <mark>V</mark> b <mark>V</mark>)	ћаbbe:-ti (ћаbVbeCeti)
cf. MSA	ħabb-a (ħab <mark>V</mark> ba)	ħabab-ti (ħabab <mark>V</mark> ti)
Not attested	nadd-a	*naddi-ko (nadVdiko)
	ħabb	*ħabbi-tu (ħabVbiti)

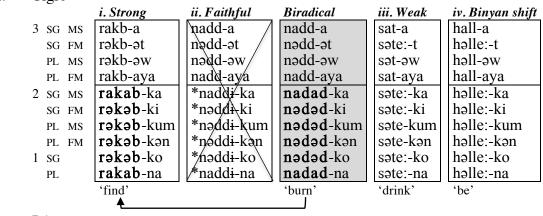
i / *i* - Epenthetic vowel

(8) **Q1**: Why don't we get the **intra**-paradigmatic faithful counterpart?

	Base	Base + C-initial suffix	
Empty V ₂	nadd-a (nad <mark>V</mark> da)	*naddi-ko (nadVdiko)	Tigre
Empty V ₂ &V ₃	ħabb (ħabVbV)	*ħabbi-ti (ħabVbiti)	PA

A1: With a faithful suffixed form we get a **new paradigm type**, i.e. a paradigm that does not exist in the verbal system.

- (9)INTER-PARADIGM UNIFORMITY (INTERPU) a. Every two structurally contrasting paradigms contrast in meaning / function
 - INTERPU is violated by the paradigms in (8), which constitute additional paradigm b. types with no contrasting function.
 - Motivation c.
 - i. The Principle of Contrast (Clark 1987:1) "Every two forms contrast in meaning"
 - ii. Clark cites Bolinger (1977): "any word which a language permits to survive must make its semantic contribution" (p. ix); "the same holds for any construction that is physically distinct from any other construction" (p. ix-x).
 - This constraint is heavily violated in Semitic languages, where each verb class d. (binyan) has several sub-classes, where sub-classes do not have any function in the grammar. E.g.


Hebrew sub-classes:	B1	B2	<i>B3</i>	<i>B4</i>	<i>B5</i>	Total
(Zadok 2012)	45	22	25	10	7	109

- i. Nevertheless, it is more likely for a language to reduce the number of paradigm types than to create new ones (Zadok 2012, Zadok and Bat-El
- ii. When two paradigm types are similar enough, verbs from the less populated paradigm migrate to the other, thus potentially reducing the number of paradigms.

(10) Back to what *does* happen

	Base	Base + C-initial suffix Vowel-final base ⇒ Pre-C geminate splitting
Tigre	nadd-a (nadVda)	nadad-ko (nadadVko)
PA	ħabb (ħabVbV)	habbe:-ti (habVbeCeti) Geminate-final base ⇒ Pre-C vowel-final stem

- (11) The biradical paradigms in both languages are modeled on existing paradigms in the
 - language, though different ones: a. **Tigre**

b. PA ii. Faithful Biradical iii. Weak iv. Binyan shift i. Strong ħább kátab ħább rám-a rább-a 3 SG MS ħább-at SG FM kátb-at ħább-at rám-at rább-at kátab-u ħább-u/ ħább-u rám-u rább-u PL. katáb-t *ħábbi-t ħabbé:-t ramé:-t rabbé:-t 2 SG MS *ħáþbi-ti ramé:-ti katáb-ti **ħabbé**:-ti rabbé:-ti SG FM *ħábbi\tu katáb-tu **ħabbé:**-tu ramé:-tu rabbé:-tu PL. katáb-t *hábbi-t\ ħabbé:-t ramé:-t rábbé:-t 1 SG katáb-na *ħábbi-na\ **ħabbé**:-na ramé:-na rabbé:-na PL write' 'loye' 'throw' 'educațe'

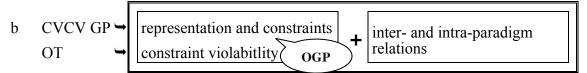
- (12) **Q2**: Given the multiple paradigms available, how is a model paradigm selected for the inflected biradicals?
 - **A2**: Intuitively, the base of the suffixed forms must be as similar as possible to the base of the paradigm.
 - **Q3**: Given this intuition, why is the strong paradigm selected with the vowel-final base (Tigre), and binyan-shift preferred for the geminate-final base (PA)?
 - **A3**: Binyan-shift allows the empty ungoverned nucleus of the base to remain empty throughout the paradigm.

(13) Uniformity within the paradigm

- INTRAPU-OV^{UG} An ungoverned empty V in the base a. corresponds to an empty V in the derived form
- Motivation: Preservation of the Marked (PoM): "marked elements can be b. specifically targeted for preservation. Consequently, highly marked elements can survive a process that less-marked elements undergo" (de Lacy 2006:146).
- INTRAPU-OC A realized C in the base c. corresponds to a realized C in the derived form
- *Long Geminate (*LongGem) d. Two identical consonants are not separated by a realized nucleus

(14) Constraint interaction

a.	PA					INTRAPU	INTRAPU	
	ħabb			ħab <mark>V</mark> bV	INTERPU	$-\bigcirc V^{UG}$	-⊙C	*LONGGEM
	*ħabbi-ti	a.	Epenthesis	ħab∨bi-ti	*!			
	*ħabb-ti	b.	Faithful	ħabVbV-ti	*!			
	*ħabab-ti	c.	Gem. split	ħababV-ti		*!		*
	*ħabe:-ti	d.	Degemination	ħabeCe-ti		*!	*	
	ħabbe:-ti	e. 🖙	Binyan shift	ħabVbeCe-ti			*	


b.	Tigre					IntraPU	IntraPU	
	nadda			nadVda	INTERPU	$\text{-} \bigcirc V^{\text{UG}}$	-⊙C	*LONGGEM
	*nadda-ko	a.	Epenthesis	nadVda-ko	*!			
	*nadd-ko	b.	Faithful	nadVdV-ko	*!			
	nadad-ko	c. 🕫	Gem. split	nadadV-ko				*
	*nade:-ko	d.	Degemination	nadeCe-ko			*!	
	*nadde:-ko	e.	Binyan shift	nadVdeCe-ko			*!	

- The constraint that draws the distinction between the two language types is the c. one preserving the marked structure – INTRAPU-OV^{UG}:
 - i. violated when the base ends in a geminate (PA)
 - ii. not violated (vacuously) when the base ends in a vowel (Tigre)
- d. The same constraint ranking explains
 - i. the exact target of the shift
 - ii. the distribution of the shift among Semitic languages

C. CONCLUSION

(15) Theoretical fusion

- We showed that there is no principled contradiction between Optimality Theory on the one hand and CVCV phonology on the other.
 - i. CVCV phonology is a theory of representations and constraints that follow from these representations; it does not have an inherent principle regarding the violability of constraints.
 - ii. Optimality Theory is a theory of constraint interaction; it does not have an inherent view regarding representations.

- We applied these tools to two issues raised by biradical verbs: c.
 - The form of the 3ms.sg. base: ħabba, ħabb or ħabab i.
 - ii. The form of this base when inflected with a C-initial suffix
- d. We hope to have shown that
 - i. The two theories are not incompatible
 - Their combination can be a fruitful endeavor ii.

REFERENCES

Clark, Eve. 1987. The Principle of Contrast: A constraint on language acquisition. Mechanisms of Language Acquisition, B. MacWhinney (ed.), 1-33. Hillsdale, NJ: Erlbaum.

Bolinger, Dwight. 1977. Meaning and Form. London: Longman.

Kuroda, Sige-Yuki. 1967/2003. Yawelmani Phonology. Cambridge, MA: MIT Press.

de Lacy, Paul. 2006. Markedness: Reduction and Preservation in Phonology. Cambridge: Cambridge University Press.

Lowenstamm, Jean. 1996. CV as the only syllable type. Current trends in Phonology. Models and Methods, J. Durand and B. Laks (eds), 419-441. Salford, Manchester: ESRI.

Raz, Shlomo. 1980. The morphology of the Tigre verb (MansaS dialect). Journal of Semitic Studies 25/1:66-84 and 25/2:205-238.

Scheer, Tobias. 2004. A lateral theory of phonology (v 1): What is CVCV, and why should it be? Berlin: Mouton de Gruyter.

McCarthy, John. 1993. A case of surface constraint violation. Constraint-Based Theories in Multilinear Phonology, C. Paradis and D. LaCharité (eds), special issue of Canadian Journal of Linguistics 38:169-195.

Prince, Alan and Paul Smolensky. 1993/2004. Optimality Theory: Constraint interaction in generative grammar. Technical report, Rutgers University, New Brunswick, NJ, and University of Colorado, Boulder. [ROA-537]. Revised version, Oxford: Blackwell.

Zadok, Gila. 2012. Similarity, Variation, and Change: Instability in Hebrew Weak Verbs. Ph.D. Dissertation, Tel-Aviv University.

Zadok, Gila and Outi Bat-El. 2014. Interparadigm leveling in Hebrew verbal system. Ms., Tel-Aviv University.